EMISIONES NUCLEARES, MEDICIÓN Y PREDICCIÓN DEL TIPO DE
DESINTEGRACIÓN NUCLEAR.
Recordemos
que el átomo es un conjunto de partículas o, definido de otra
manera, es la partícula más pequeña de un elemento químico que
puede existir conservando las propiedades del mismo. Contiene tres
partículas fundamentales: los electrones y los nucleones que están
ubicados en el núcleo y son 2 (protones y neutrones). Los átomos de
un determinado elemento químico X lo podemos representar en general
como: AzX siendo z=número atómico (cantidad
de protones) y A=número másico=cantidad de nucleones.
Por
otro lado no todos los átomos de un elemento químico son
exactamente iguales: pueden tener diferente A (diferente cantidad de
neutrones). A los átomos de un mismo elemento químico con diferente
A se les llama isótopos o nucleidos.
A
su vez, los isótopos de un elemento químico van a diferir en la
estabilidad de sus núcleos: algunos son estables y otros son
inestables. Los inestables se conocen como radioisótopos (o
radioactivos) y a sus núcleos se les denomina radionucleidos:
espontáneamente se transformarán en otros núcleos con emisión de
partículas y/o radiaciones. Dicha emisión espontánea se denomina
radiactividad y tiene múltiples aplicaciones, una de las cuales
corresponde a una TEP (tomografía de emisión de positrones) como lo
ilustra la imagen que encabeza este artículo extraída de
“Química. La Ciencia Central” de Brown, Le May, Bursten.
Editorial Pearson Prentice Hall Año 2004 (novena edición).
El
cuadro siguiente nos muestra algunas propiedades de las radiaciones
que en general se propagan en línea recta y en todas las
direcciones, provocan luminiscencia de determinadas sustancias,
ionizan el aire (excepto las γ),
tienen efectos mecánicos, calóricos o químicos.
Características
|
Radiación α
|
Radiación β
|
Radiación γ
|
Carga
|
+2
|
-1
|
0
|
Masa (en gramos)
|
6,64x10-24
|
9,11x10-28
|
0
|
Poder relativo de penetración
|
1
|
100
|
1000
|
Poder ionizante
|
“grande”
|
Menor que α
|
No tiene (sin carga)
|
Naturaleza de la radiación
|
Núcleos de 42He
|
Electrones
|
Fotones de alta energía
|
Del
cuadro anterior se deduce que como blindaje a las radiaciones α
alcanza con una hoja de papel y es suficiente trabajar a una
distancia de unos 10 cm de la fuente para que al organismo no le
llegue ninguna partícula. Las partículas β
requieren otras medidas de blindaje que dependen de la energía de
las mismas (por ejemplo: se frenan colocando una hoja de aluminio o
estando a varios metros de distancia). Por último las emisiones γ
no son absorbidas completamente por el material de blindaje empleado
y por eso éste último debe ser suficientemente grueso para que el
nivel de dosis fuera de él sea aceptable (de ahí el empleo del
plomo).
MEDICIÓN
DE LA RADIACIÓN Y UNIDADES
La
radiación al atravesar la materia produce diferentes efectos como
ser: ionización de gases, excitación de luminiscencia en sólidos,
ennegrecimiento de placas fotográficas.
Una
radiación ionizante al atravesar un gas provoca la ionización de
una parte de sus átomos y entonces se liberan iones positivos y
electrones convirtiendo a ese gas en conductor eléctrico (se genera
un pulso de corriente que puede ser detectado).
Basados
en los hechos mencionados existen dispositivos de detección y medida
de radiaciones: cámaras de ionización; contadores de centelleo;
contadores Geiger-Muller...
El
contador Geiger-Muller, mostrado en la figura, “comienza” su
historia en 1908 con el físico alemán Hans Geiger (1882-1945) y
continúa con Walter Müller (físico alemán, 1905-1979).
En
síntesis: consiste en un tubo metálico lleno de gas que tiene una
ventana construida con un material (por ejemplo: mica) que permite
ser atravesado por radiaciones. En el centro del tubo hay un cable
que puede ser conectado a una fuente de corriente directa y el
cilindro de metal está conectado a la otra terminal. A través de la
fuente de alto voltaje la corriente fluye entre el alambre y el
cilindro metálico siempre que haya iones producidos por la radiación
que entra. El pulso de corriente así generado se amplifica y el
número de pulsos es proporcional a la actividad, siendo la altura de
cada pulso proporcional a la energía.
La
actividad (la velocidad de desintegración de un núcleo radiactivo)
es proporcional al número de partículas que se emiten por unidad de
tiempo. Se ha usado la unidad Curio (Ci): definida como la actividad
correspondiente a 3,7x1010 desintegraciones por segundo.
Actualmente se usa la unidad Becquerel (Bq): igual a una
desintegración por segundo.
La
desintegración radiactiva es un proceso espontáneo: cumple con las
leyes estadísticas (aleatorias). En consecuencia la cantidad de
núcleos que se desintegran en la unidad de tiempo será variable de
medida en medida. Una fuente de radiación irradia continuamente y
nosotros sólo registramos ciertos tiempos de medida. Por eso, en una
actividad experimental repetimos varias veces una misma medida y
determinamos el valor medio.
PREDICCIÓN
DEL TIPO DE DESINTEGRACIÓN NUCLEAR
Exactamente
no puede afirmarse si un núcleo es estable o radiactivo o qué tipo
de desintegración sufrirá: depende de varios factores. Sin embargo
existen observaciones empíricas que nos permiten realizar
predicciones.
La
estabilidad de un núcleo está dada por las interacciones nucleares
(fuerza de atracción entre los nucleones en la cual participan los
neutrones: de alguna manera éstos“moderan” la repulsión entre
los protones).
Las
observaciones experimentales sugieren que la razón entre neutrones y
protones de núcleos (10n/11p)
nos permiten predecir el tipo más probable de desintegración
radiactiva de cada radioisótopo comparando dicho cociente con los
núcleos cercanos que están dentro del llamado cinturón de
estabilidad: en donde se ubican los núcleos estables (en la banda
coloreada de la gráfica adjunta). La razón de neutrones a protones
de los núcleos estables aumenta al aumentar el número atómico. En
la mayoría de los casos los núcleos radiactivos están fuera del
cinturón de estabilidad. Éste termina en el elemento bismuto
(número atómico, z, igual a 83).
Distinguimos
algunas situaciones generales que nos permiten predecir cuál es la
desintegración más probable. Veámoslas.
1)
Núcleos por encima del
cinturón de estabilidad (alta relación 10n/11p),
ricos en neutrones pueden emitir una partícula β (reduce la
cantidad de neutrones y aumenta la de protones).
Ejemplo:
Desintegración del 146C.
La
cantidad de neutrones y de protones en este caso es 8 (14-6) y 6
respectivamente; la relación 10n/11p
es 8/6=1,3. Observamos que esta relación se encuentra por encima del
cinturón de estabilidad (para átomos de número atómico pequeño
dicha relación es 1 o próxima a ello). Por lo anterior sufrirá
preferentemente una desintegración β: ésta aumenta la cantidad de
protones y disminuye la cantidad de neutrones. La ecuación es:
146C
→ 0-1e
+ 147N
y 10n/11p
es 7/7=1 en el 147N.
2)
Núcleos por debajo del
cinturón de estabilidad (pequeñas razones de 10n/11p
): pueden “mejorar” su estabilidad nuclear emitiendo positrones o
por captura electrónica (ambas desintegraciones aumentan la
cantidad de neutrones y disminuye la de protones); en los núcleos
más ligeros es más común la emisión de positrones que la captura
electrónica. Esta última se torna más común a medida que aumenta
la carga nuclear.
Ejemplo:
Desintegración
del 11854Xe.
En
este caso la relación 10n/11p
es (118-54)/54=64/54=1,18. Según el cinturón de estabilidad esta
relación está por debajo. Entonces para alcanzar la estabilidad
dicho núcleo debería reducir la cantidad de protones y aumentar la
de neutrones lo cual es posible mediante emisión de positrones o
captura electrónica, por lo que es posible que se den esas
reacciones nucleares.
Las
ecuaciones respectivas son: 11854Xe
→01e
+ 11853I
para la emisión de positrones y para la captura electrónica
11854Xe
+ 0-1e
→ 11853I.
Ahora la relación 10n/11p
pasó a ser:
(118-53)/53=65/53=1,22
(aumentó acercándose a la estabilidad)
3)
Todos los núcleos con
número atómico ≥ 84 son radiactivos y tienden a emitir partículas
α en la cual se reduce el número de neutrones y de protones.
Ejemplo:
Desintegración
del 23994Pu.
Como
z es ≥ 84, la desintegración más probable es la α.
En
este caso la ecuación es: 23994Pu
→ 42α
+ 23592U
Notas
Observaciones
empíricas sugieren que:
a)
los núcleos que contienes números mágicos de
11p
o de 10n
generalmente son más estables (números mágicos: 2,8,20,28,50,82
para los 11p
o 2,8,20,50,82,126 para los 10n).
b) los
núcleos con números pares de 11p
y 10n
son más estables que los que tienen números impares de nucleones.